Strength Exercises With Blood Flow Restriction Promotes Hypotensive and Hypoglycemic Effects in Women With Mellitus Type 2 Diabetes?: Randomized Crossover Study
Keywords:
Kaatsu training, vascular occlusion, resistance training, blood pressure, blood glucoseAbstract
The aim of this study was to investigate the effects of blood flow restriction (BFR) strength exercises on blood pressure (BP) and blood glucose (BG) in diabetic women. Ten women with type II diabetes (Age = 56.9 ± 7.4 years old; BMI = 27.2 ± 4.2 kg/m2; Diagnostic time = 10.6 ± 4.1 years) participated in this study. On three non-consecutive days, participants were randomly assigned to 1 of 3 training conditions: (i) Low-load exercise [LL; ~ 20% of 1 maximum repetition (1RM)]; (ii) LL-BFR exercise [~ 20% of 1RM/50% of arterial occlusion pressure (AOP)]; (iii) High load exercise (HL; ~ 65% of 1RM). Systolic BP (SBP), diastolic BP (DBP) and mean (MBP) values were assessed before, immediately, 15, 30, 45 and 60 min after the interventions. BG concentrations were analyzed before, immediately and 60 min after the interventions. SBP significantly reduced 60 min after LL exercise (p = 0.002), but it was not significantly reduced at any point after LL-BFR or HL exercise. DBP decreased significantly 45 min after LL exercise (p = 0.028) and 60 min after LL and LL-BFR exercise (p = 0.004 and p = 0.002, respectively). We verified a condition effect for the BG percentage variation, however post-hoc analyzes revealed only a difference tendency between LL and LL-BFR exercises (3.5% and -10%, respectively; p = 0.053). It is concluded that the LL and LL-BFR exercise protocols resulted in a post-exercise hypotensive effect, and the BFR protocol, apparently, presents superiority in BG reduction.
Downloads
References
1. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137-49. [PMID: 24630390]. https://doi.org/10.1016/j.diabres.2013.11.002
2. Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2016;92(1084):63-9. [PMID: 26621825]. https://doi.org/10.1136/postgradmedj-2015-133281
3. Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215-22. [PMID: 20609967] [PMCID: PMC2904878]. https://doi.org/10.1016/S0140-6736(10)60484-9
4. Teuscher A, Egger M, Herman JB. Diabetes and hypertension. Blood pressure in clinical diabetic patients and a control population. Arch Intern Med. 1989;149(9):1942-5. [PMID: 2774774]. https://doi.org/10.1001/archinte.149.9.1942
5. Adler AI, Stratton IM, Neil HA, Yudkin JS, Matthews DR, Cull CA, et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. Bmj. 2000;321(7258):412-9. [PMID: 10938049] [PMCID: PMC27455]. https://doi.org/10.1136/bmj.321.7258.412
6. Group UPDS. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). The lancet. 1998;352(9131):837-53. https://doi.org/10.1016/S0140-6736(98)07019-6
7. Kanaley JA, Colberg SR, Corcoran MH, Malin SK, Rodriguez NR, Crespo CJ, et al. Exercise/physical activity in individuals with type 2 diabetes: a consensus statement from the American College of Sports Medicine. Medicine and science in sports and exercise. 2022. [PMID: 35029593] [PMCID: PMC8802999]. https://doi.org/10.1249/MSS.0000000000002800
8. Simões GC, Moreira SR, Kushnick MR, Simões HG, Campbell CS. Postresistance exercise blood pressure reduction is influenced by exercise intensity in type-2 diabetic and nondiabetic individuals. J Strength Cond Res. 2010;24(5):1277-84. [PMID: 20386125]. https://doi.org/10.1519/JSC.0b013e3181d67488
9. Adams OP. The impact of brief high-intensity exercise on blood glucose levels. Diabetes Metab Syndr Obes. 2013;6:113-22. [PMID: 23467903] [PMCID: PMC3587394]. https://doi.org/10.2147/DMSO.S29222
10. Maior AS, Simão R, Martins MS, de Salles BF, Willardson JM. Influence of Blood Flow Restriction During Low-Intensity Resistance Exercise on the Postexercise Hypotensive Response. J Strength Cond Res. 2015;29(10):2894-9. [PMID: 25764494]. https://doi.org/10.1519/JSC.0000000000000930
11. Neto GR, Sousa MS, Costa PB, Salles BF, Novaes GS, Novaes JS. Hypotensive effects of resistance exercises with blood flow restriction. J Strength Cond Res. 2015;29(4):1064-70. [PMID: 25330083]. https://doi.org/10.1519/JSC.0000000000000734
12. Saatmann N, Zaharia OP, Loenneke JP, Roden M, Pesta DH. Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes. Trends Endocrinol Metab. 2021;32(2):106-17. [PMID: 33358931] . https://doi.org/10.1016/j.tem.2020.11.010
13. Christiansen D, Eibye KH, Hostrup M, Bangsbo J. Blood flow-restricted training enhances thigh glucose uptake during exercise and muscle antioxidant function in humans. Metabolism. 2019;98:1-15. [PMID: 31199953] . https://doi.org/10.1016/j.metabol.2019.06.003
14. Domingos E, Polito MD. Blood pressure response between resistance exercise with and without blood flow restriction: A systematic review and meta-analysis. Life Sci. 2018;209:122-31. [PMID: 30086274]. https://doi.org/10.1016/j.lfs.2018.08.006
15. Vecchiato M, Zanardo E, Battista F, Quinto G, Bergia C, Palermi S, et al. The effect of exercise training on irisin secretion in patients with type 2 diabetes: a systematic review. Journal of Clinical Medicine. 2022;12(1):62. [PMID: 36614864] [PMCID: PMC9821049]. https://doi.org/10.3390/jcm12010062
16. Motta DF, Lima LC, Arsa G, Russo PS, Sales MM, Moreira SR, et al. Effect of type 2 diabetes on plasma kallikrein activity after physical exercise and its relationship to post-exercise hypotension. Diabetes Metab. 2010;36(5):363-8. [PMID: 20579916]. https://doi.org/10.1016/j.diabet.2010.03.008
17. Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M, Jr., et al. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc. 2012;44(3):406-12. [PMID: 21900845]. https://doi.org/10.1249/
MSS.0b013e318233b4bc
18. Brzycki M. Strength Testing—Predicting a One-Rep Max from Reps-to-Fatigue. Journal of Physical Education, Recreation & Dance. 1993;64(1):88-90. https://doi.org/10.1080/07303084.1993.10606684
19. Figueroa A, Vicil F. Post-exercise aortic hemodynamic responses to low-intensity resistance exercise with and without vascular occlusion. Scand J Med Sci Sports. 2011;21(3):431-6. [PMID: 20136757]. https://doi.org/10.1111/j.1600-0838.2009.01061.x
20. Moriggi R, Jr., Mauro HD, Dias SC, Matos JM, Urtado MB, Camarço NF, et al. Similar hypotensive responses to resistance exercise with and without blood flow restriction. Biol Sport. 2015;32(4):289-94. [PMID: 26681830] [PMCID: PMC4672159]. https://doi.org/10.5604/20831862.1163691
21. Spranger MD, Krishnan AC, Levy PD, O'Leary DS, Smith SA. Blood flow restriction training and the exercise pressor reflex: a call for concern. Am J Physiol Heart Circ Physiol. 2015;309(9):H1440-52. [PMID: 26342064] [PMCID: PMC7002872]. https://doi.org/10.1152/ajpheart.00208.2015
22. Espinoza L, Boychuk CR. Diabetes, and its treatment, as an effector of autonomic nervous system circuits and its functions. Curr Opin Pharmacol. 2020;54:18-26. [PMID: 32721846]. https://doi.org/10.1016/j.coph.2020.06.006
23. Turker Y, Aslantas Y, Aydin Y, Demirin H, Kutlucan A, Tibilli H, et al. Heart rate variability and heart rate recovery in patients with type 1 diabetes mellitus. Acta Cardiol. 2013;68(2):145-50. [PMID: 23705556] . https://doi.org/10.1080/ac.68.2.2967271
24. Grgic J, Lazinica B, Mikulic P, Krieger JW, Schoenfeld BJ. The effects of short versus long inter-set rest intervals in resistance training on measures of muscle hypertrophy: A systematic review. Eur J Sport Sci. 2017;17(8):983-93. [PMID: 28641044]. https://doi.org/10.1080/17461391.2017.1340524
25. Veloso J, Polito MD, Riera T, Celes R, Vidal JC, Bottaro M. Efeitos do intervalo de recuperação entre as séries sobre a pressão arterial após exercícios resistidos. Arquivos Brasileiros de Cardiologia. 2010;94:512-8. https://doi.org/10.1590/S0066-782X2010005000019
26. Poton R, Polito MD. Hemodynamic response to resistance exercise with and without blood flow restriction in healthy subjects. Clin Physiol Funct Imaging. 2016;36(3):231-6. [PMID: 25431280]. https://doi.org/10.1111/cpf.12218
27. Isik O, Dogan I. Effects of bilateral or unilateral lower body resistance exercises on markers of skeletal muscle damage. Biomed J. 2018;41(6):364-8. [PMID: 30709578] [PMCID: PMC6361852]. https://doi.org/10.1016/j.bj.2018.10.003
28. Fluckey JD, Ploug T, Galbo H. Mechanisms associated with hypoxia- and contraction-mediated glucose transport in muscle are fibre-dependent. Acta Physiol Scand. 1999;167(1):83-7. [PMID: 10519981]. https://doi.org/10.1046/j.1365-201x.1999.00593.x
29. Cartee GD, Douen AG, Ramlal T, Klip A, Holloszy JO. Stimulation of glucose transport in skeletal muscle by hypoxia. J Appl Physiol (1985). 1991;70(4):1593-600. [PMID: 2055841]. https://doi.org/10.1152/jappl.1991.70.4.1593
30. Burgomaster KA, Moore DR, Schofield LM, Phillips SM, Sale DG, Gibala MJ. Resistance training with vascular occlusion: metabolic adaptations in human muscle. Med Sci Sports Exerc. 2003;35(7):1203-8. [PMID: 12840643]. https://doi.org/10.1249/01.MSS.0000074458.71025.71
Downloads
Additional Files
Published
License
Copyright (c) 2023 Arthur Wagner da Silva Rodrigues, Ana Beatriz Alves Martins, Nailton José Brandão de Albuquerque Filho, Victor Sabino de Queiros, Marina Gonçalves Assis, Eliete Samara Batista dos Santos, Luiz Arthur Cavalcanti Cabral, Felippe Barbosa Gomes, Morteza Taheri, Khadijeh Irandoust (Author); Gabriel Rodrigues Neto (Corresponding Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

