Advances in Radiological Techniques for Cancer Diagnosis: A Narrative Review of Current Technologies
Keywords:
Biomarker Imaging, Biopsy Techniques, Contrast Imaging, Functional Imaging, Imaging Advances, Neoplastic Imaging, Oncology Modalities, Precision Oncology, Radiomic, Radiotracer Use, Screening Technology, Tumor CharacterizationAbstract
This review aimed to assess the recent advancements in radiological techniques for cancer diagnosis, focusing on the clinical applications and the potential for these technologies to improve patient experiences and personalize the diagnostic process. A detailed literature search was conducted in several databases up to February 2024, using a combination of keywords and Medical Subject Headings (MeSH) terms related to "cancer diagnosis" and "radiological techniques." The inclusion criteria were peer-reviewed articles in English that focus on advanced imaging modalities in cancer diagnosis. Data were synthesized to identify key advancements, challenges, and future directions. The advancements in photon counting detector Computed Tomography (CT), quantitative imaging biomarkers, and emerging diagnostic substances like radiotracers were highlighted. The review identified significant improvements in imaging techniques such as multiparametric Magnetic Resonance Imaging (MRI) and diffusion-weighted imaging. It also addressed the clinical, technological, and economic challenges in adopting these advancements globally, as well as the initiatives aimed at improving access to advanced diagnostics. The importance of collaboration between radiologists, oncologists, and engineers in optimizing these technologies for clinical use was emphasized. Radiological advancements have enhanced the capacity for precise and personalized cancer diagnosis, with a significant positive impact on patient care. Despite the promising developments, challenges related to access and implementation persist. Addressing these issues requires global efforts to ensure equitable access to advanced diagnostics and collaborative innovation to refine and integrate these technologies into clinical practice, ultimately leading to better global health outcomes.
Downloads
References
1. World Health Organization. Cancer 2021 [Available
from: https://www.who.int/news-room/fact-sheets/detail/cancer.
2. Ali Z, Hamdoun A. Comparative Analysis of Barium
Enema and Computed Tomography Colonography: Diagnostic
Performance, Patient Experience, and Healthcare Implications - A
Narrative Review. New Asian Journal of Medicine. 2024;2(1):17-
26. [DOI]
3. Fitzgerald RC, Antoniou AC, Fruk L, Rosenfeld N. The
future of early cancer detection. Nature Medicine.
2022;28(4):666-77. [PMID: 35440720] [DOI]
4. Li M, Zhang Q, Yang K. Role of MRI-Based Functional
Imaging in Improving the Therapeutic Index of Radiotherapy in
Cancer Treatment. Frontiers in Oncology. 2021;11. [PMID:
26786412] [PMCID: PMC4846529] [DOI]
5. Hussain S, Mubeen I, Ullah N, Shah SSUD, Khan BA,
Zahoor M, et al. Modern Diagnostic Imaging Technique
Applications and Risk Factors in the Medical Field: A Review.
BioMed Research International. 2022;2022:5164970. [PMID:
35707373] [PMCID: PMC9192206] [DOI]
6. Kowalewska B, Drozdz W, Kowalewski L. Positron
emission tomography (PET) and single-photon emission
computed tomography (SPECT) in autism research: literature
review. Irish Journal of Psychological Medicine. 2022;39(3):272-
86. [PMID: 33818321] [DOI]
7. Bruno F, Granata V, Cobianchi Bellisari F, Sgalambro
F, Tommasino E, Palumbo P, et al. Advanced Magnetic
Resonance Imaging (MRI) Techniques: Technical Principles and
Applications in Nanomedicine. Cancers. 2022;14(7):1626.
[PMID: 35406399] [PMCID: PMC8997011] [DOI]
8. Sharma U, Jagannathan NR. Magnetic Resonance
Imaging (MRI) and MR Spectroscopic Methods in Understanding
Breast Cancer Biology and Metabolism. Metabolites.
2022;12(4):295. [PMID: 35448482] [PMCID: PMC9030399]
[DOI]
9. Deantonio L, Castronovo F, Paone G, Treglia G, Zilli T.
Metabolic Imaging for Radiation Therapy Treatment Planning:
The Role of Hybrid PET/MR Imaging. Magnetic Resonance
Imaging Clinics of North America. 2023;31(4):637-54. [PMID:
37741647] [DOI]
10. Hameed BMZ, Prerepa G, Patil V, Shekhar P, Zahid
Raza S, Karimi H, et al. Engineering and clinical use of artificial
intelligence (AI) with machine learning and data science
advancements: radiology leading the way for future. Therapeutic
Advances in Urology. 2021;13:17562872211044880. [PMID:
34567272] [PMCID: PMC8458681] [DOI]
11. Berenguer CV, Pereira F, Câmara JS, Pereira JAM.
Underlying Features of Prostate Cancer—Statistics, Risk Factors,
and Emerging Methods for Its Diagnosis. Current Oncology.
2023;30(2):2300-21. [PMID: 36826139] [PMCID: PMC9955741]
[DOI]
12. Farshchi F, Hasanzadeh M. Microfluidic biosensing of
circulating tumor cells (CTCs): Recent progress and challenges in
efficient diagnosis of cancer. Biomedicine & Pharmacotherapy.
2021;134:111153. [PMID: 33360045] [DOI]
13. Lu L, Sun M, Lu Q, Wu T, Huang B. High energy Xray radiation sensitive scintillating materials for medical imaging,
cancer diagnosis and therapy. Nano Energy. 2021;79:105437.
[DOI]
14. Yu K-H, Lee T-LM, Yen M-H, Kou SC, Rosen B,
Chiang J-H, Kohane IS. Reproducible Machine Learning Methods
for Lung Cancer Detection Using Computed Tomography Images:
Algorithm Development and Validation. J Med Internet Res.
2020;22(8):e16709. [PMID: 32755895] [PMCID: PMC7439139]
[DOI]
15. Singh M, Singh T, Soni S. Pre-operative Assessment of
Ablation Margins for Variable Blood Perfusion Metrics in a
Magnetic Resonance Imaging Based Complex Breast Tumour
Anatomy: Simulation Paradigms in Thermal Therapies. Computer
Methods and Programs in Biomedicine. 2021;198:105781.
[PMID: 33065492] [DOI]
16. Rosati A, Gueli Alletti S, Capozzi VA, Mirandola M,
Vargiu V, Fedele C, et al. Role of ultrasound in the detection of
recurrent ovarian cancer: a review of the literature. Gland
Surgery. 2020;9(4):1092-101. [PMID: 32953624] [PMCID:
PMC7475345] [DOI]
17. van der Meulen NP, Strobel K, Lima TVM. New
Radionuclides and Technological Advances in SPECT and PET
Scanners. Cancers. 2021;13(24):6183. [PMID: 34944803]
[PMCID: PMC8699425] [DOI]
18. Unterrainer M, Eze C, Ilhan H, Marschner S,
Roengvoraphoj O, Schmidt-Hegemann NS, et al. Recent advances
of PET imaging in clinical radiation oncology. Radiation
Oncology. 2020;15(1):88. [PMID: 32317029] [PMCID:
PMC7171749] [DOI]
19. Tanaka T, Yang M, Froemming AT, Bryce AH, Inai R,
Kanazawa S, Kawashima A. Current Imaging Techniques for and
Imaging Spectrum of Prostate Cancer Recurrence and Metastasis:
A Pictorial Review. RadioGraphics. 2020;40(3):709-26. [PMID:
32196428] [DOI]
20. Kemp JA, Kwon YJ. Cancer nanotechnology: current
status and perspectives. Nano Convergence. 2021;8(1):34.
[PMID: 34727233] [PMCID: PMC8560887] [DOI]
21. Sechopoulos I, Teuwen J, Mann R. Artificial
intelligence for breast cancer detection in mammography and
digital breast tomosynthesis: State of the art. Seminars in Cancer
Biology. 2021;72:214-25. [PMID: 32531273] [DOI]
22. Paudyal R, Shah AD, Akin O, Do RKG, Konar AS,
Hatzoglou V, et al. Artificial Intelligence in CT and MR Imaging
for Oncological Applications. Cancers. 2023;15(9):2573. [PMID:
37174039] [PMCID: PMC10177423] [DOI]
23. Akay S, Pollard JH, Saad Eddin A, Alatoum A,
Kandemirli S, Gholamrezanezhad A, et al. PET/CT Imaging in
Treatment Planning and Surveillance of Sinonasal Neoplasms.
Cancers. 2023;15(15):3759. [PMID: 37568575] [PMCID:
PMC10417627] [DOI]
24. Padhani AR, Koh D-M, Collins DJ. Whole-Body
Diffusion-weighted MR Imaging in Cancer: Current Status and
Research Directions. Radiology. 2011;261(3):700-18. [PMID:
22095994] [DOI]
25. Linet MS, Slovis TL, Miller DL, Kleinerman R, Lee C,
Rajaraman P, Berrington de Gonzalez A. Cancer risks associated
with external radiation from diagnostic imaging procedures. CA:
A Cancer Journal for Clinicians. 2012;62(2):75-100. [PMID:
22307864] [PMCID: PMC3548988] [DOI]
26. Overcast WB, Davis KM, Ho CY, Hutchins GD, Green
MA, Graner BD, Veronesi MC. Advanced imaging techniques for
neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI
imaging of malignant brain tumors. Current Oncology Reports.
2021;23(3):34. [PMID: 33599882] [PMCID: PMC7892735]
[DOI]
27. Torigian DA, Zaidi H, Kwee TC, Saboury B, Udupa JK,
Cho Z-H, Alavi A. PET/MR Imaging: Technical Aspects and
Potential Clinical Applications. Radiology. 2013;267(1):26-44.
[PMID: 23525716] [DOI]
28. Holly TA, Abbott BG, Al-Mallah M, Calnon DA,
Cohen MC, DiFilippo FP, et al. Single photon-emission computed
tomography. Journal of Nuclear Cardiology. 2010;17(5):941-73.
[PMID: 20552312] [DOI]
29. Giganti F, Allen C, Emberton M, Moore CM,
Kasivisvanathan V. Prostate Imaging Quality (PI-QUAL): A New
Quality Control Scoring System for Multiparametric Magnetic
Resonance Imaging of the Prostate from the PRECISION trial.
European Urology Oncology. 2020;3(5):615-9. [PMID:
32646850] [DOI]
30. Qiu J, Liu J, Bi Z, Sun X, Wang X, Zhang J, et al.
Integrated slice-specific dynamic shimming diffusion weighted
imaging (DWI) for rectal Cancer detection and characterization.
Cancer Imaging. 2021;21(1):32. [PMID: 33827704] [PMCID:
PMC8028796] [DOI]
31. Miles K, McQueen L, Ngai S, Law P. Evidence-based
medicine and clinical fluorodeoxyglucose PET/MRI in oncology.
Cancer Imaging. 2015;15(1):18. [PMID: 26578188] [PMCID:
PMC4650106] [DOI]
32. Hofman MS, Hicks RJ, Maurer T, Eiber M. Prostatespecific Membrane Antigen PET: Clinical Utility in Prostate
Cancer, Normal Patterns, Pearls, and Pitfalls. RadioGraphics.
2018;38(1):200-17. [PMID: 29320333] [DOI]
33. Savir-Baruch B, Schuster DM. Prostate Cancer Imaging
with 18F-Fluciclovine. PET Clinics. 2022;17(4):607-20. [PMID:
36229104] [DOI]
34. Zhou Z, Lu Z-R. Gadolinium-based contrast agents for
magnetic resonance cancer imaging. WIREs Nanomedicine and
Nanobiotechnology. 2013;5(1):1-18. [PMID: 23047730] [PMCID:
PMC3552562] [DOI]
35. Cutler CS, Lewis JS, Anderson CJ. Utilization of
metabolic, transport and receptor-mediated processes to deliver
agents for cancer diagnosis. Advanced Drug Delivery Reviews.
1999;37(1):189-211. [PMID: 10837735] [DOI]
36. Badea CT, Clark DP, Holbrook M, Srivastava M,
Mowery Y, Ghaghada KB. Functional imaging of tumor
vasculature using iodine and gadolinium-based nanoparticle
contrast agents: a comparison of spectral micro-CT using energy
integrating and photon counting detectors. Physics in Medicine &
Biology. 2019;64(6):065007. [PMID: 30708357] [PMCID:
PMC6607440] [DOI]
37. Marcu LG, Moghaddasi L, Bezak E. Imaging of Tumor
Characteristics and Molecular Pathways With PET: Developments
Over the Last Decade Toward Personalized Cancer Therapy.
International Journal of Radiation Oncology, Biology, Physics.
2018;102(4):1165-82. [PMID: 29907486] [DOI]
38. Granata V, Fusco R, Bicchierai G, Cozzi D, Grazzini G,
Danti G, et al. Diagnostic protocols in oncology: workup and
treatment planning. Part 1: the optimitation of CT protocol.
European Review for Medical & Pharmacological Sciences.
2021;25(22).
39. McMurray JJV, Adamopoulos S, Anker SD, Auricchio
A, Böhm M, Dickstein K, et al. Corrigendum to: ESC Guidelines
for the diagnosis and treatment of acute and chronic heart failure
European Heart Journal. 2012;34(2):158-. [PMID: 22611136]
[PMCID: PMC4846529] [DOI]
40. Ghasemi M, Nabipour I, Omrani A, Alipour Z, Assadi
M. Precision medicine and molecular imaging: new targeted
approaches toward cancer therapeutic and diagnosis. American
journal of nuclear medicine and molecular imaging.
2016;6(6):310.
41. Rudkouskaya A, Sinsuebphon N, Ochoa M, Chen S-J,
Mazurkiewicz JE, Intes X, Barroso M. Multiplexed non-invasive
tumor imaging of glucose metabolism and receptor-ligand
engagement using dark quencher FRET acceptor. Theranostics.
2020;10(22):10309-25. [PMID: 32929350] [PMCID:
PMC7481426] [DOI]
42. Rutman AM, Kuo MD. Radiogenomics: Creating a link
between molecular diagnostics and diagnostic imaging. European
Journal of Radiology. 2009;70(2):232-41. [PMID: 19303233]
[DOI]
43. Ding Z, Wang N, Ji N, Chen Z-S. Proteomics
technologies for cancer liquid biopsies. Molecular Cancer.
2022;21(1):53. [PMID: 35168611] [PMCID: PMC8845389]
[DOI]
44. Do C, DeAguero J, Brearley A, Trejo X, Howard T,
Escobar GP, Wagner B. Gadolinium-Based Contrast Agent Use,
Their Safety, and Practice Evolution. Kidney360. 2020;1(6):561-
8. [PMID: 34423308] [PMCID: PMC8378745] [DOI]
45. Cosmai L, Porta C, Privitera C, Gesualdo L, Procopio
G, Gori S, Laghi A. Acute kidney injury from contrast-enhanced
CT procedures in patients with cancer: white paper to highlight its
clinical relevance and discuss applicable preventive strategies.
ESMO Open. 2020;5(2). [PMID: 32205339] [PMCID:
PMC7204797] [DOI]
46. Rashidi A, Baratto L, Theruvath AJ, Greene EB,
Jayapal P, Hawk KE, et al. Improved Detection of Bone
Metastases in Children and Young Adults with Ferumoxytolenhanced MRI. Radiology: Imaging Cancer. 2023;5(2):e220080.
[PMID: 36999999] [PMCID: PMC10077085] [DOI]
47. Ravi H, Arias-Lorza AM, Costello JR, Han HS, Jeong
DK, Klinz SG, et al. Pretherapy Ferumoxytol-enhanced MRI to
Predict Response to Liposomal Irinotecan in Metastatic Breast
Cancer. Radiology: Imaging Cancer. 2023;5(2):e220022. [PMID:
36734848] [PMCID: PMC10077095] [DOI]
48. He X, Liu X, Zuo F, Shi H, Jing J. Artificial
intelligence-based multi-omics analysis fuels cancer precision
medicine. Seminars in Cancer Biology. 2023;88:187-200. [PMID:
36596352] [DOI]
49. Gastounioti A, Desai S, Ahluwalia VS, Conant EF,
Kontos D. Artificial intelligence in mammographic phenotyping
of breast cancer risk: a narrative review. Breast Cancer Research.
2022;24(1):14. [PMID: 35184757] [PMCID: PMC8859891]
[DOI]
50. Lecointre L, Dana J, Lodi M, Akladios C, Gallix B.
Artificial intelligence-based radiomics models in endometrial
cancer: A systematic review. European Journal of Surgical
Oncology. 2021;47(11):2734-41. [PMID: 34183201] [DOI]
51. Sheth D, Giger ML. Artificial intelligence in the
interpretation of breast cancer on MRI. Journal of Magnetic
Resonance Imaging. 2020;51(5):1310-24. [PMID: 31343790]
[DOI]
52. Qin Y, Deng Y, Jiang H, Hu N, Song B. Artificial
Intelligence in the Imaging of Gastric Cancer: Current
Applications and Future Direction. Frontiers in Oncology.
2021;11. [PMID: 34367946] [PMCID: PMC8335156] [DOI]
53. Yalon M, Sae-Kho T, Khanna A, Chang S, Andrist BR,
Weber NM, et al. Staging of breast cancer in the breast and
regional lymph nodes using contrast-enhanced photon-counting
detector CT: accuracy and potential impact on patient
management. British Journal of Radiology. 2023;97(1153):93-7.
[PMID: 38263843] [DOI]
54. Obuchowski NA, Huang E, deSouza NM, Raunig D,
Delfino J, Buckler A, et al. A Framework for Evaluating the
Technical Performance of Multiparameter Quantitative Imaging
Biomarkers (mp-QIBs). Academic Radiology. 2023;30(2):147-58.
[PMID: 36180328] [PMCID: PMC9825639] [DOI]
55. Haleem A, Javaid M, Suman R, Singh RP. 3D printing
applications for radiology: an overview. Indian Journal of
Radiology and Imaging. 2021;31(01):010-7.
56. Vitzthum von Eckstaedt HV, Kitts AB, Swanson C,
Hanley M, Krishnaraj A. Patient-centered Radiology Reporting
for Lung Cancer Screening. Journal of Thoracic Imaging.
2020;35(2):85-90. [PMID: 31913258] [DOI]
57. Penedo FJ, Oswald LB, Kronenfeld JP, Garcia SF, Cella
D, Yanez B. The increasing value of eHealth in the delivery of
patient-centred cancer care. The Lancet Oncology.
2020;21(5):e240-e51. [PMID: 32359500] [DOI]
58. Suman BM, Christine MOB, Kevin B, Ryan CF, Julie
AM, Samuel A. Repurposing Molecular Imaging and Sensing for
Cancer Image–Guided Surgery. Journal of Nuclear Medicine.
2020;61(8):1113. [PMID: 32303598] [PMCID: PMC7413229]
[DOI]
59. Cortes J, Perez-García JM, Llombart-Cussac A,
Curigliano G, El Saghir NS, Cardoso F, et al. Enhancing global
access to cancer medicines. CA: A Cancer Journal for Clinicians.
2020;70(2):105-24. [PMID: 32068901] [DOI]
60. Johnston K, Smith D, Preston R, Evans R, Carlisle K,
Lengren J, et al. “From the technology came the idea”: safe
implementation and operation of a high quality teleradiology
model increasing access to timely breast cancer assessment
services for women in rural Australia. BMC Health Services
Research. 2020;20(1):1103. [PMID: 33256724] [PMCID:
PMC7708244] [DOI]
61. Mizuno K, Beltran H. Future directions for precision
oncology in prostate cancer. The Prostate. 2022;82(S1):S86-S96.
[PMID: 35657153] [PMCID: PMC9942493] [DOI]
62. Manickam P, Mariappan SA, Murugesan SM, Hansda
S, Kaushik A, Shinde R, Thipperudraswamy SP. Artificial
Intelligence (AI) and Internet of Medical Things (IoMT) Assisted
Biomedical Systems for Intelligent Healthcare. Biosensors.
2022;12(8):562. [PMID: 35892459] [PMCID: PMC9330886]
[DOI]
63. Dergaa I, Fekih-Romdhane F, Glenn JM, Fessi MS,
Chamari K, Dhahbi W, et al. Moving Beyond the Stigma:
Understanding and Overcoming the Resistance to the Acceptance
and Adoption of Artificial Intelligence Chatbots. New Asian
Journal of Medicine. 2023;1(2):29-36. [DOI]
64. Chtourou H, Guelmami N, Trabelsi K, Dergaa I. The
Beginning of Our Journey: The Launch of the Tunisian Journal of
Sports Science and Medicine. Tunisian Journal of Sports Science
and Medicine. 2023;1(1):1-3. [DOI]
65. Dergaa I, Saad HB. Artificial Intelligence and
Promoting Open Access in Academic Publishing Intelligence
artificielle et promotion de l’accès libre dans la publication
académique. La Tunisie medicale. 2023;101(06):533-6.
Downloads
Additional Files
Published
Submitted
Revised
Accepted
Issue
Section
Categories
License
Copyright (c) 2024 Zuhair Ali (Corresponding Author); Anas Hamdoun, Abdelmoneim Alattaya (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

