Advances in Radiological Techniques for Cancer Diagnosis: A Narrative Review of Current Technologies

Authors

    Zuhair Ali * Antrim Area Hospital Antrim, County Antrim, Ireland Zuhair71@hotmail.com
    Anas Hamdoun King Abdullah bin Abdulaziz University Hospital, Riyadh, KSA
    Abdelmoneim Alattaya John Hopkins Aramco Healthcare, Dhahran, KSA
https://doi.org/10.61838/kman.hn.2.1.6

Keywords:

Biomarker Imaging, Biopsy Techniques, Contrast Imaging, Functional Imaging, Imaging Advances, Neoplastic Imaging, Oncology Modalities, Precision Oncology, Radiomic, Radiotracer Use, Screening Technology, Tumor Characterization

Abstract

This review aimed to assess the recent advancements in radiological techniques for cancer diagnosis, focusing on the clinical applications and the potential for these technologies to improve patient experiences and personalize the diagnostic process. A detailed literature search was conducted in several databases up to February 2024, using a combination of keywords and Medical Subject Headings (MeSH) terms related to "cancer diagnosis" and "radiological techniques." The inclusion criteria were peer-reviewed articles in English that focus on advanced imaging modalities in cancer diagnosis. Data were synthesized to identify key advancements, challenges, and future directions. The advancements in photon counting detector Computed Tomography (CT), quantitative imaging biomarkers, and emerging diagnostic substances like radiotracers were highlighted. The review identified significant improvements in imaging techniques such as multiparametric Magnetic Resonance Imaging (MRI) and diffusion-weighted imaging. It also addressed the clinical, technological, and economic challenges in adopting these advancements globally, as well as the initiatives aimed at improving access to advanced diagnostics. The importance of collaboration between radiologists, oncologists, and engineers in optimizing these technologies for clinical use was emphasized. Radiological advancements have enhanced the capacity for precise and personalized cancer diagnosis, with a significant positive impact on patient care. Despite the promising developments, challenges related to access and implementation persist. Addressing these issues requires global efforts to ensure equitable access to advanced diagnostics and collaborative innovation to refine and integrate these technologies into clinical practice, ultimately leading to better global health outcomes.

Downloads

Download data is not yet available.

References

1. World Health Organization. Cancer 2021 [Available

from: https://www.who.int/news-room/fact-sheets/detail/cancer.

2. Ali Z, Hamdoun A. Comparative Analysis of Barium

Enema and Computed Tomography Colonography: Diagnostic

Performance, Patient Experience, and Healthcare Implications - A

Narrative Review. New Asian Journal of Medicine. 2024;2(1):17-

26. [DOI]

3. Fitzgerald RC, Antoniou AC, Fruk L, Rosenfeld N. The

future of early cancer detection. Nature Medicine.

2022;28(4):666-77. [PMID: 35440720] [DOI]

4. Li M, Zhang Q, Yang K. Role of MRI-Based Functional

Imaging in Improving the Therapeutic Index of Radiotherapy in

Cancer Treatment. Frontiers in Oncology. 2021;11. [PMID:

26786412] [PMCID: PMC4846529] [DOI]

5. Hussain S, Mubeen I, Ullah N, Shah SSUD, Khan BA,

Zahoor M, et al. Modern Diagnostic Imaging Technique

Applications and Risk Factors in the Medical Field: A Review.

BioMed Research International. 2022;2022:5164970. [PMID:

35707373] [PMCID: PMC9192206] [DOI]

6. Kowalewska B, Drozdz W, Kowalewski L. Positron

emission tomography (PET) and single-photon emission

computed tomography (SPECT) in autism research: literature

review. Irish Journal of Psychological Medicine. 2022;39(3):272-

86. [PMID: 33818321] [DOI]

7. Bruno F, Granata V, Cobianchi Bellisari F, Sgalambro

F, Tommasino E, Palumbo P, et al. Advanced Magnetic

Resonance Imaging (MRI) Techniques: Technical Principles and

Applications in Nanomedicine. Cancers. 2022;14(7):1626.

[PMID: 35406399] [PMCID: PMC8997011] [DOI]

8. Sharma U, Jagannathan NR. Magnetic Resonance

Imaging (MRI) and MR Spectroscopic Methods in Understanding

Breast Cancer Biology and Metabolism. Metabolites.

2022;12(4):295. [PMID: 35448482] [PMCID: PMC9030399]

[DOI]

9. Deantonio L, Castronovo F, Paone G, Treglia G, Zilli T.

Metabolic Imaging for Radiation Therapy Treatment Planning:

The Role of Hybrid PET/MR Imaging. Magnetic Resonance

Imaging Clinics of North America. 2023;31(4):637-54. [PMID:

37741647] [DOI]

10. Hameed BMZ, Prerepa G, Patil V, Shekhar P, Zahid

Raza S, Karimi H, et al. Engineering and clinical use of artificial

intelligence (AI) with machine learning and data science

advancements: radiology leading the way for future. Therapeutic

Advances in Urology. 2021;13:17562872211044880. [PMID:

34567272] [PMCID: PMC8458681] [DOI]

11. Berenguer CV, Pereira F, Câmara JS, Pereira JAM.

Underlying Features of Prostate Cancer—Statistics, Risk Factors,

and Emerging Methods for Its Diagnosis. Current Oncology.

2023;30(2):2300-21. [PMID: 36826139] [PMCID: PMC9955741]

[DOI]

12. Farshchi F, Hasanzadeh M. Microfluidic biosensing of

circulating tumor cells (CTCs): Recent progress and challenges in

efficient diagnosis of cancer. Biomedicine & Pharmacotherapy.

2021;134:111153. [PMID: 33360045] [DOI]

13. Lu L, Sun M, Lu Q, Wu T, Huang B. High energy Xray radiation sensitive scintillating materials for medical imaging,

cancer diagnosis and therapy. Nano Energy. 2021;79:105437.

[DOI]

14. Yu K-H, Lee T-LM, Yen M-H, Kou SC, Rosen B,

Chiang J-H, Kohane IS. Reproducible Machine Learning Methods

for Lung Cancer Detection Using Computed Tomography Images:

Algorithm Development and Validation. J Med Internet Res.

2020;22(8):e16709. [PMID: 32755895] [PMCID: PMC7439139]

[DOI]

15. Singh M, Singh T, Soni S. Pre-operative Assessment of

Ablation Margins for Variable Blood Perfusion Metrics in a

Magnetic Resonance Imaging Based Complex Breast Tumour

Anatomy: Simulation Paradigms in Thermal Therapies. Computer

Methods and Programs in Biomedicine. 2021;198:105781.

[PMID: 33065492] [DOI]

16. Rosati A, Gueli Alletti S, Capozzi VA, Mirandola M,

Vargiu V, Fedele C, et al. Role of ultrasound in the detection of

recurrent ovarian cancer: a review of the literature. Gland

Surgery. 2020;9(4):1092-101. [PMID: 32953624] [PMCID:

PMC7475345] [DOI]

17. van der Meulen NP, Strobel K, Lima TVM. New

Radionuclides and Technological Advances in SPECT and PET

Scanners. Cancers. 2021;13(24):6183. [PMID: 34944803]

[PMCID: PMC8699425] [DOI]

18. Unterrainer M, Eze C, Ilhan H, Marschner S,

Roengvoraphoj O, Schmidt-Hegemann NS, et al. Recent advances

of PET imaging in clinical radiation oncology. Radiation

Oncology. 2020;15(1):88. [PMID: 32317029] [PMCID:

PMC7171749] [DOI]

19. Tanaka T, Yang M, Froemming AT, Bryce AH, Inai R,

Kanazawa S, Kawashima A. Current Imaging Techniques for and

Imaging Spectrum of Prostate Cancer Recurrence and Metastasis:

A Pictorial Review. RadioGraphics. 2020;40(3):709-26. [PMID:

32196428] [DOI]

20. Kemp JA, Kwon YJ. Cancer nanotechnology: current

status and perspectives. Nano Convergence. 2021;8(1):34.

[PMID: 34727233] [PMCID: PMC8560887] [DOI]

21. Sechopoulos I, Teuwen J, Mann R. Artificial

intelligence for breast cancer detection in mammography and

digital breast tomosynthesis: State of the art. Seminars in Cancer

Biology. 2021;72:214-25. [PMID: 32531273] [DOI]

22. Paudyal R, Shah AD, Akin O, Do RKG, Konar AS,

Hatzoglou V, et al. Artificial Intelligence in CT and MR Imaging

for Oncological Applications. Cancers. 2023;15(9):2573. [PMID:

37174039] [PMCID: PMC10177423] [DOI]

23. Akay S, Pollard JH, Saad Eddin A, Alatoum A,

Kandemirli S, Gholamrezanezhad A, et al. PET/CT Imaging in

Treatment Planning and Surveillance of Sinonasal Neoplasms.

Cancers. 2023;15(15):3759. [PMID: 37568575] [PMCID:

PMC10417627] [DOI]

24. Padhani AR, Koh D-M, Collins DJ. Whole-Body

Diffusion-weighted MR Imaging in Cancer: Current Status and

Research Directions. Radiology. 2011;261(3):700-18. [PMID:

22095994] [DOI]

25. Linet MS, Slovis TL, Miller DL, Kleinerman R, Lee C,

Rajaraman P, Berrington de Gonzalez A. Cancer risks associated

with external radiation from diagnostic imaging procedures. CA:

A Cancer Journal for Clinicians. 2012;62(2):75-100. [PMID:

22307864] [PMCID: PMC3548988] [DOI]

26. Overcast WB, Davis KM, Ho CY, Hutchins GD, Green

MA, Graner BD, Veronesi MC. Advanced imaging techniques for

neuro-oncologic tumor diagnosis, with an emphasis on PET-MRI

imaging of malignant brain tumors. Current Oncology Reports.

2021;23(3):34. [PMID: 33599882] [PMCID: PMC7892735]

[DOI]

27. Torigian DA, Zaidi H, Kwee TC, Saboury B, Udupa JK,

Cho Z-H, Alavi A. PET/MR Imaging: Technical Aspects and

Potential Clinical Applications. Radiology. 2013;267(1):26-44.

[PMID: 23525716] [DOI]

28. Holly TA, Abbott BG, Al-Mallah M, Calnon DA,

Cohen MC, DiFilippo FP, et al. Single photon-emission computed

tomography. Journal of Nuclear Cardiology. 2010;17(5):941-73.

[PMID: 20552312] [DOI]

29. Giganti F, Allen C, Emberton M, Moore CM,

Kasivisvanathan V. Prostate Imaging Quality (PI-QUAL): A New

Quality Control Scoring System for Multiparametric Magnetic

Resonance Imaging of the Prostate from the PRECISION trial.

European Urology Oncology. 2020;3(5):615-9. [PMID:

32646850] [DOI]

30. Qiu J, Liu J, Bi Z, Sun X, Wang X, Zhang J, et al.

Integrated slice-specific dynamic shimming diffusion weighted

imaging (DWI) for rectal Cancer detection and characterization.

Cancer Imaging. 2021;21(1):32. [PMID: 33827704] [PMCID:

PMC8028796] [DOI]

31. Miles K, McQueen L, Ngai S, Law P. Evidence-based

medicine and clinical fluorodeoxyglucose PET/MRI in oncology.

Cancer Imaging. 2015;15(1):18. [PMID: 26578188] [PMCID:

PMC4650106] [DOI]

32. Hofman MS, Hicks RJ, Maurer T, Eiber M. Prostatespecific Membrane Antigen PET: Clinical Utility in Prostate

Cancer, Normal Patterns, Pearls, and Pitfalls. RadioGraphics.

2018;38(1):200-17. [PMID: 29320333] [DOI]

33. Savir-Baruch B, Schuster DM. Prostate Cancer Imaging

with 18F-Fluciclovine. PET Clinics. 2022;17(4):607-20. [PMID:

36229104] [DOI]

34. Zhou Z, Lu Z-R. Gadolinium-based contrast agents for

magnetic resonance cancer imaging. WIREs Nanomedicine and

Nanobiotechnology. 2013;5(1):1-18. [PMID: 23047730] [PMCID:

PMC3552562] [DOI]

35. Cutler CS, Lewis JS, Anderson CJ. Utilization of

metabolic, transport and receptor-mediated processes to deliver

agents for cancer diagnosis. Advanced Drug Delivery Reviews.

1999;37(1):189-211. [PMID: 10837735] [DOI]

36. Badea CT, Clark DP, Holbrook M, Srivastava M,

Mowery Y, Ghaghada KB. Functional imaging of tumor

vasculature using iodine and gadolinium-based nanoparticle

contrast agents: a comparison of spectral micro-CT using energy

integrating and photon counting detectors. Physics in Medicine &

Biology. 2019;64(6):065007. [PMID: 30708357] [PMCID:

PMC6607440] [DOI]

37. Marcu LG, Moghaddasi L, Bezak E. Imaging of Tumor

Characteristics and Molecular Pathways With PET: Developments

Over the Last Decade Toward Personalized Cancer Therapy.

International Journal of Radiation Oncology, Biology, Physics.

2018;102(4):1165-82. [PMID: 29907486] [DOI]

38. Granata V, Fusco R, Bicchierai G, Cozzi D, Grazzini G,

Danti G, et al. Diagnostic protocols in oncology: workup and

treatment planning. Part 1: the optimitation of CT protocol.

European Review for Medical & Pharmacological Sciences.

2021;25(22).

39. McMurray JJV, Adamopoulos S, Anker SD, Auricchio

A, Böhm M, Dickstein K, et al. Corrigendum to: ESC Guidelines

for the diagnosis and treatment of acute and chronic heart failure

European Heart Journal. 2012;34(2):158-. [PMID: 22611136]

[PMCID: PMC4846529] [DOI]

40. Ghasemi M, Nabipour I, Omrani A, Alipour Z, Assadi

M. Precision medicine and molecular imaging: new targeted

approaches toward cancer therapeutic and diagnosis. American

journal of nuclear medicine and molecular imaging.

2016;6(6):310.

41. Rudkouskaya A, Sinsuebphon N, Ochoa M, Chen S-J,

Mazurkiewicz JE, Intes X, Barroso M. Multiplexed non-invasive

tumor imaging of glucose metabolism and receptor-ligand

engagement using dark quencher FRET acceptor. Theranostics.

2020;10(22):10309-25. [PMID: 32929350] [PMCID:

PMC7481426] [DOI]

42. Rutman AM, Kuo MD. Radiogenomics: Creating a link

between molecular diagnostics and diagnostic imaging. European

Journal of Radiology. 2009;70(2):232-41. [PMID: 19303233]

[DOI]

43. Ding Z, Wang N, Ji N, Chen Z-S. Proteomics

technologies for cancer liquid biopsies. Molecular Cancer.

2022;21(1):53. [PMID: 35168611] [PMCID: PMC8845389]

[DOI]

44. Do C, DeAguero J, Brearley A, Trejo X, Howard T,

Escobar GP, Wagner B. Gadolinium-Based Contrast Agent Use,

Their Safety, and Practice Evolution. Kidney360. 2020;1(6):561-

8. [PMID: 34423308] [PMCID: PMC8378745] [DOI]

45. Cosmai L, Porta C, Privitera C, Gesualdo L, Procopio

G, Gori S, Laghi A. Acute kidney injury from contrast-enhanced

CT procedures in patients with cancer: white paper to highlight its

clinical relevance and discuss applicable preventive strategies.

ESMO Open. 2020;5(2). [PMID: 32205339] [PMCID:

PMC7204797] [DOI]

46. Rashidi A, Baratto L, Theruvath AJ, Greene EB,

Jayapal P, Hawk KE, et al. Improved Detection of Bone

Metastases in Children and Young Adults with Ferumoxytolenhanced MRI. Radiology: Imaging Cancer. 2023;5(2):e220080.

[PMID: 36999999] [PMCID: PMC10077085] [DOI]

47. Ravi H, Arias-Lorza AM, Costello JR, Han HS, Jeong

DK, Klinz SG, et al. Pretherapy Ferumoxytol-enhanced MRI to

Predict Response to Liposomal Irinotecan in Metastatic Breast

Cancer. Radiology: Imaging Cancer. 2023;5(2):e220022. [PMID:

36734848] [PMCID: PMC10077095] [DOI]

48. He X, Liu X, Zuo F, Shi H, Jing J. Artificial

intelligence-based multi-omics analysis fuels cancer precision

medicine. Seminars in Cancer Biology. 2023;88:187-200. [PMID:

36596352] [DOI]

49. Gastounioti A, Desai S, Ahluwalia VS, Conant EF,

Kontos D. Artificial intelligence in mammographic phenotyping

of breast cancer risk: a narrative review. Breast Cancer Research.

2022;24(1):14. [PMID: 35184757] [PMCID: PMC8859891]

[DOI]

50. Lecointre L, Dana J, Lodi M, Akladios C, Gallix B.

Artificial intelligence-based radiomics models in endometrial

cancer: A systematic review. European Journal of Surgical

Oncology. 2021;47(11):2734-41. [PMID: 34183201] [DOI]

51. Sheth D, Giger ML. Artificial intelligence in the

interpretation of breast cancer on MRI. Journal of Magnetic

Resonance Imaging. 2020;51(5):1310-24. [PMID: 31343790]

[DOI]

52. Qin Y, Deng Y, Jiang H, Hu N, Song B. Artificial

Intelligence in the Imaging of Gastric Cancer: Current

Applications and Future Direction. Frontiers in Oncology.

2021;11. [PMID: 34367946] [PMCID: PMC8335156] [DOI]

53. Yalon M, Sae-Kho T, Khanna A, Chang S, Andrist BR,

Weber NM, et al. Staging of breast cancer in the breast and

regional lymph nodes using contrast-enhanced photon-counting

detector CT: accuracy and potential impact on patient

management. British Journal of Radiology. 2023;97(1153):93-7.

[PMID: 38263843] [DOI]

54. Obuchowski NA, Huang E, deSouza NM, Raunig D,

Delfino J, Buckler A, et al. A Framework for Evaluating the

Technical Performance of Multiparameter Quantitative Imaging

Biomarkers (mp-QIBs). Academic Radiology. 2023;30(2):147-58.

[PMID: 36180328] [PMCID: PMC9825639] [DOI]

55. Haleem A, Javaid M, Suman R, Singh RP. 3D printing

applications for radiology: an overview. Indian Journal of

Radiology and Imaging. 2021;31(01):010-7.

56. Vitzthum von Eckstaedt HV, Kitts AB, Swanson C,

Hanley M, Krishnaraj A. Patient-centered Radiology Reporting

for Lung Cancer Screening. Journal of Thoracic Imaging.

2020;35(2):85-90. [PMID: 31913258] [DOI]

57. Penedo FJ, Oswald LB, Kronenfeld JP, Garcia SF, Cella

D, Yanez B. The increasing value of eHealth in the delivery of

patient-centred cancer care. The Lancet Oncology.

2020;21(5):e240-e51. [PMID: 32359500] [DOI]

58. Suman BM, Christine MOB, Kevin B, Ryan CF, Julie

AM, Samuel A. Repurposing Molecular Imaging and Sensing for

Cancer Image–Guided Surgery. Journal of Nuclear Medicine.

2020;61(8):1113. [PMID: 32303598] [PMCID: PMC7413229]

[DOI]

59. Cortes J, Perez-García JM, Llombart-Cussac A,

Curigliano G, El Saghir NS, Cardoso F, et al. Enhancing global

access to cancer medicines. CA: A Cancer Journal for Clinicians.

2020;70(2):105-24. [PMID: 32068901] [DOI]

60. Johnston K, Smith D, Preston R, Evans R, Carlisle K,

Lengren J, et al. “From the technology came the idea”: safe

implementation and operation of a high quality teleradiology

model increasing access to timely breast cancer assessment

services for women in rural Australia. BMC Health Services

Research. 2020;20(1):1103. [PMID: 33256724] [PMCID:

PMC7708244] [DOI]

61. Mizuno K, Beltran H. Future directions for precision

oncology in prostate cancer. The Prostate. 2022;82(S1):S86-S96.

[PMID: 35657153] [PMCID: PMC9942493] [DOI]

62. Manickam P, Mariappan SA, Murugesan SM, Hansda

S, Kaushik A, Shinde R, Thipperudraswamy SP. Artificial

Intelligence (AI) and Internet of Medical Things (IoMT) Assisted

Biomedical Systems for Intelligent Healthcare. Biosensors.

2022;12(8):562. [PMID: 35892459] [PMCID: PMC9330886]

[DOI]

63. Dergaa I, Fekih-Romdhane F, Glenn JM, Fessi MS,

Chamari K, Dhahbi W, et al. Moving Beyond the Stigma:

Understanding and Overcoming the Resistance to the Acceptance

and Adoption of Artificial Intelligence Chatbots. New Asian

Journal of Medicine. 2023;1(2):29-36. [DOI]

64. Chtourou H, Guelmami N, Trabelsi K, Dergaa I. The

Beginning of Our Journey: The Launch of the Tunisian Journal of

Sports Science and Medicine. Tunisian Journal of Sports Science

and Medicine. 2023;1(1):1-3. [DOI]

65. Dergaa I, Saad HB. Artificial Intelligence and

Promoting Open Access in Academic Publishing Intelligence

artificielle et promotion de l’accès libre dans la publication

académique. La Tunisie medicale. 2023;101(06):533-6.

Downloads

Additional Files

Published

2024-01-01

How to Cite

Ali, Z., Hamdoun, A. ., & Alattaya, A. . (2024). Advances in Radiological Techniques for Cancer Diagnosis: A Narrative Review of Current Technologies. Health Nexus, 2(1), 43-56. https://doi.org/10.61838/kman.hn.2.1.6