Effects of Conventional Exercise versus Functional Training on Physical Performance in AJA Students during the Socialization Course: A Quasi-Experimental Study

Hamid Omidi^{1*}, Reza Sabzevari Rad¹, Amir Shamlou Kazemi¹

¹ Department of Physical Education and Sport Sciences, Faculty of Command and management, Imam Ali Military' University, Tehran, Iran

* Corresponding author email address: hamidomidi63@gmail.com

Article Info

Article type:

Original Research

How to cite this article:

Omidi, H., Sabzevari Rad, R., & Shamlou Kazemi, A. (2025). Effects of Conventional Exercise versus Functional Training on Physical Performance in AJA Students during the Socialization Course: A Quasi-Experimental Study. *Health Nexus*, 3(4), 1-9.

https://doi.org/10.61838/kman.hn.3.4.16

© 2025 the authors. Published by KMAN Publication Inc. (KMANPUB), Ontario, Canada. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License.

ABSTRACT

This study compared the effects of conventional exercise and functional training, implemented during the AJA socialization course, on multiple dimensions of physical performance. A quasi-experimental pre-test-post-test design was employed. Thirty-four male AJA students were randomly assigned to either a conventional exercise group (n = 17) or a functional training group (n = 17). Physical performance was evaluated using the 1-1-1 Army Physical Fitness Test (one-mile run, push-ups, sit-ups), the Running-based Anaerobic Sprint Test (RAST), and the Y-Balance Test (YBT). Paired-sample t-tests assessed within-group changes, and analysis of covariance (ANCOVA) examined between-group differences while controlling for baseline values. Statistical significance was set at $p \le 0.05$. Between-group comparisons revealed no significant differences for the one-mile run (p = 0.385, η^2 = 0.06) or the YBT anterior reach (p = 0.093, η^2 = 0.07). The functional training group showed significantly greater improvements in YBT posteromedial (p = 0.022, η^2 = 0.16) and posterolateral (p = 0.001, η^2 = 0.27) reaches, total YBT score (p = 0.031, $\eta^2 = 0.34$), peak anaerobic power (p = 0.001, $\eta^2 = 0.36$), push-ups (p = 0.017, $\eta^2 =$ 0.18), and sit-ups (p = 0.028, η^2 = 0.16). Functional training produced greater improvements in anaerobic power, dynamic balance, and muscular endurance compared to conventional exercise during the AJA socialization course. Given its superior performance outcomes and potential to reduce musculoskeletal injury risk, functional training should be prioritized in military induction programs to better prepare recruits for advanced training and operational demands.

Keywords: Functional Training, Military Fitness, Anaerobic Power, Dynamic Balance, Injury Prevention

1. Introduction

The primary objective of military training is to develop and sustain optimal physical fitness, a critical determinant of operational efficiency and mission performance in military personnel (1, 2). Maintaining a high level of physical readiness enables service members to meet occupational demands effectively, even under unpredictable and high-stress conditions (3). Military tasks often require a combination of sustained physical exertion and rapid cognitive decision-making, and training programs are specifically designed to prepare recruits for these challenges (4). Activities such as individual combat tactics, drill and ceremony, prone crawling, tactical bounding, obstacle course navigation, running with weapons, and structured

morning physical training require robust baseline fitness (5, 6).

The initial phase of training, commonly referred to as the socialization or basic training course, serves to transform civilian recruits into trained military personnel (7). This period presents significant physical and psychological challenges, fostering adaptation to the military environment while building resilience (8). Although basic training offers considerable fitness and mental health benefits (9), it is also associated with an elevated risk of injury, particularly in the early weeks when recruits have not yet reached sufficient conditioning levels (10).

Musculoskeletal injuries classified as cumulative trauma or overuse injuries affecting muscles, tendons, bones, joints, cartilage, or ligaments (11) are particularly prevalent in military contexts. In the U.S. Army, for example, the incidence of such injuries during basic combat training can reach 42% in male recruits (12). These injuries negatively impact immediate performance, hinder daily military duties (13), and are a leading cause of chronic disability, medical discharge, and premature career termination (14). Approximately one in four military personnel is discharged due to musculoskeletal injuries, resulting in significant implications for force readiness and imposing substantial financial burdens on military institutions (15).

Efforts to reduce injury rates in athletic and military populations have explored a range of interventions, including equipment modifications (e.g., shoe insoles, specialized footwear), nutritional strategies (e.g., postexercise protein supplementation), and programmatic training adjustments such as neuromuscular and resistance training (16). Effective injury prevention requires coordinated efforts among commanders, healthcare training authorities to providers, researchers, and institutionalize evidence-based practices (17). Beyond individual well-being, injury prevention plays a vital role in maintaining operational readiness and sustaining national defense capability (18).

A persistent challenge is identifying recruits at increased risk of injury early in the training cycle and designing programs that simultaneously enhance performance and minimize injury risk. Screening tools such as the modified 1-1-1 Army Physical Fitness Assessment have been

employed to evaluate baseline capabilities and inform training strategies (19).

Given the high incidence of injury during initial military training and the essential role of physical fitness in operational effectiveness, it is critical to determine the most effective training methods for this formative period. The present study aimed to assess whether functional training, compared with conventional physical training, provides superior improvements in physical performance measures and contributes more effectively to injury risk reduction among AJA students during the socialization course.

2. Methods and Materials

2.1. Study Design and Participants

This quasi-experimental study employed a pre-test-post-test design in an applied military training setting. The study population comprised officer cadets enrolled in the initial military training phase. Sample size calculations using G*Power software indicated a minimum of 30 participants to achieve a statistical power of 0.5, a confidence level of 0.8, and a significance level of 0.05 (20). To account for potential attrition, 34 cadets were recruited. Participants were then randomly assigned to either a conventional training group (n = 17) or a functional training group (n = 17) using a simple randomization method. A random number table was employed to generate the allocation sequence, and cadets were assigned sequentially according to this sequence to ensure unbiased group distribution.

2.2. Ethical Considerations and Supervision

The study was conducted in accordance with institutional ethical guidelines. All participants provided written informed consent after receiving a full explanation of study aims, procedures, and potential risks. Participant confidentiality was maintained, and withdrawal from the study was permitted at any time without penalty. All training sessions (both conventional and functional) were supervised by certified physical training instructors and the research team to ensure correct technique, safety, and compliance with the protocols. Attendance was recorded at each session. Adherence was calculated as the proportion of attended sessions relative to the total number prescribed, with

participants achieving \geq 85% attendance considered adherent to the protocol.

2.3. Injury Monitoring

Injury incidence was systematically monitored throughout the study. Musculoskeletal injury was defined as any physical complaint involving muscles, joints, bones, or connective tissues that resulted in (1) medical evaluation, (2) modification or cessation of training, or (3) absence from ≥1 training session. Injuries were identified and documented by a licensed military physician affiliated with the training academy, and all cases were recorded in a standardized injury log.

2.4. Inclusion and Exclusion Criteria

Inclusion criteria were: (1) enrollment in the initial military training course and (2) no pre-existing musculoskeletal injury. Exclusion criteria were:

- 1. Absence from >3 total training sessions or >2 consecutive sessions;
- 2. Non-cooperation with study procedures;
- 3. Voluntary withdrawal;
- 4. Onset of pain or discomfort during training;
- Sustaining an injury necessitating discontinuation of training (21).

2.5. Baseline Assessment

Demographic data including age, height, weight, and body mass index (BMI) were collected at baseline. A standardized briefing session was held to ensure participant understanding of the testing protocols and training procedures.

2.6. Physical Performance Assessments

All performance testing was conducted at baseline and post-intervention, following standardized protocols to ensure reliability.

1. Army 1-1-1 Physical Fitness Assessment (19)

 Push-up test: Maximum repetitions performed with proper form.

- Sit-up test: Maximum repetitions completed with knees at 90°, feet secured, and proper trunk flexion and extension.
- One-mile run: Timed 1.6 km run on a flat track under dual-assessor supervision.

2. Y-Balance Test (YBT) (22)

Participants balanced on their dominant leg while reaching in anterior, posteromedial, and posterolateral directions with the non-dominant leg. Three trials per direction were recorded following a warm-up. Dynamic balance scores for each direction were calculated as:

Normalized Reach Distance (%)

$$= \frac{Reach \, Distance \, (cm)}{Leg \, Length \, (cm)} \times 100$$

3. Running-based Anaerobic Sprint Test (RAST)

Participants performed six maximal 35 m sprints separated by 10-second passive rests. Sprint times were recorded using precision stopwatches, and peak, mean, and minimum power outputs, along with fatigue index, were calculated using body mass and sprint performance data.

2.7. Training Protocols

2.7.1. Conventional Training Group

The conventional training program reflected the standard physical training typically employed during initial military education. It consisted of running, and basic bodyweight exercises performed at moderate intensity. Training sessions were conducted five times per week, each lasting approximately 45 minutes. Running sessions included distances ranging from 2 to 4 kilometers with gradual weekly progression. Calisthenics included push-ups, sit-ups, pull-ups, and squats, performed in 3–4 sets of 12–15 repetitions. Intensity and volume were progressively increased over the 8-week program in accordance with standard military conditioning practices.

2.7.2. Functional Training Group

The High-Intensity Functional Resistance Training (HIFRT) program was adapted from Banaszek et al. (23) and designed to mimic military occupational demands by integrating strength, power, balance, and coordination exercises into a single circuit format (Table 1).

Table 1Structure of the High-Intensity Functional Resistance Training Program

Parameter	Description
Training modality	Integrated resistance training incorporating concurrent upper- and lower-extremity exercises, multi-planar movement patterns, core stability training, neuromuscular coordination drills, and balance-oriented activities.
Training intensity	Program duration: 8 weeks; prescribed at a moderate-to-vigorous effort corresponding to a Rating of Perceived Exertion (RPE) of 6–7 on the Borg CR10 scale
Training structure and volume	Circuit training with 8 exercise stations; 40 s work / 20 s rest per station; 3 complete circuits per session; total session duration \approx 25 min.
Program duration	8 weeks

 Table 2

 High-Intensity Functional Resistance Training Protocol, Categorized by Primary Movement Focus

Functional Category	Exercise Description	Equipment Type	Week(s) Performed
Lower Body Strength & Power	sit-to-stand with elbow flexion	Body weight	1,5
	Sumo squat	Body weight	
	Squat thruster	Body weight	3, 7
	Stiff-leg deadlift	Free weight	
	Front pulldown with squat	Elastic bands	
	Upright row with sumo squat	Body weight	2, 6
	Hip extension	Body weight	
	Side lateral raise with lunge	Body weight	
	Front raise with side lunge	Free weight	
Upper Body Strength & Pulling	Push-ups	Body weight	
Movements	Suspended row	Body weight	
	Horizontal row	Elastic bands	
	Horizontal row	Body weight	
	Bench press	Body weight	
	Standing bench press	Body weight	4, 8
Upper Body Strength & Pushing	Push forward	Body weight	
Movements	Shoulder abduction/adduction	Body weight	
	Dumbbell fly with pelvic elevation	Free weight	
Core Stability & Trunk Control	Crunches with rotation	Body weigh	
,	Ball crunch	Body weigh	
	Crunch	Body weigh	
	Trunk lateral flexion	Body weigh	
	Trunk rotation	Body weigh	
	Elastic trunk rotation	Elastic bands	
	Good morning	Free weight	
Balance & Coordination	Side-lying hip abduction	Body weight	
	Airplane (single-leg T-position balance)	Body weight	
	Single-leg balance with eyes closed	Body weight	
	Single-leg balance with eyes closed (duplicate entry)	Body weight	
	Knee flexion with elbow flexion	Body weight	
	Dumbbell swing	Free weight	
	Hip flexion with elbow flexion	Elastic bands	

2.8. Statistical Analysis

Descriptive statistics (mean \pm standard deviation) were computed for all demographic and performance variables.

Data distribution normality was assessed with the Shapiro—Wilk test. Within-group pre—post differences were analyzed using Paired-samples *t*-tests. Between-group post-test comparisons, controlling for baseline scores, were

performed using analysis of covariance (ANCOVA). Statistical analyses were conducted in SPSS version 26, with significance set at p < 0.05.

Findings and Results 3.

Thirty-four cadets (n = 34) completed the training without attrition. Baseline demographic program

Table 3 Descriptive Characteristics of Participants (Mean \pm SD)

Variable	Conventional Exercise	Functional Training	
Height (cm)	178.14 ± 6.43	179.66 ± 7.26	
Weight (kg)	71.52 ± 4.13	71.90 ± 5.17	
Age (years)	20.19 ± 2.16	19.23 ± 2.30	
BMI (kg/m²)	21.98 ± 1.04	22.13 ± 1.39	

Note. BMI = body mass index, calculated as weight (kg) ÷ height² (m²).

Paired-samples t tests (Table 4) indicated statistically significant improvements from pre-test to post-test in pushups (p = .023), sit-ups (p = .035), one-mile run time (p = .035)

.047), and peak anaerobic power (p = .027). Changes in dynamic balance were not statistically significant (p > .05).

characteristics are presented in Table 3. Independent-

samples t tests revealed no significant differences between

the conventional exercise and functional training groups at baseline (p > .05), indicating comparable starting conditions.

Table 4 Physical Performance in the Conventional Exercise Group (Mean \pm SD)

Variable		Pre-Test	Post-Test	<i>p</i> -value
Push-ups		3.26 ± 1.50	2.33 ± 2.80	.023*
Sit-ups		5.29 ± 8.60	9.37 ± 2.60	.035*
One-Mile Run (s)		539.20 ± 2.64	491.60 ± 4.10	.047*
Peak Anaerobic Power (W)	602.63 ± 43.15	627.63 ± 17.14	.027*
Dynamic Balance	Anterior	87.37 ± 64.70	91.24 ± 72.60	.136
	Posteromedial	92.26 ± 11.90	96.31 ± 68.30	.096
	Posterolateral	89.47 ± 91.70	92.67 ± 39.60	.258
	Composite Score	91.07 ± 68.70	93.89 ± 61.50	.649

Note. P < .05.

As shown in Table 5, the functional training group demonstrated significant improvements in all measured variables (p < .05), including all directions of dynamic balance.

Table 5 Physical Performance in the Functional Training Group (Mean \pm SD)

Variable		Pre-Test	Post-Test	<i>p</i> -value
Push-ups		27.70 ± 6.80	43.30 ± 1.70	.005*
Sit-ups		30.50 ± 4.60	47.10 ± 3.50	.003*
One-Mile Run (s)		534.30 ± 4.10	472.20 ± 6.92	.009*
Peak Anaerobic Power (W)	599.36 ± 24.13	661.32 ± 14.18	.007*
Dynamic Balance	Anterior	86.24 ± 81.60	94.81 ± 5.09	.019*
	Posteromedial	94.39 ± 53.90	105.17 ± 40.40	.001*
	Posterolateral	90.39 ± 32.70	102.74 ± 92.50	.001*
	Composite Score	90.67 ± 88.70	99.24 ± 13.50	.023*

Analysis of covariance (ANCOVA), controlling for baseline scores, indicated that the functional training group achieved significantly greater improvements than the conventional exercise group in push-ups (p = .017, $\eta^2 = .18$), sit-ups (p = .028, $\eta^2 = .16$), peak anaerobic power (p = .001, $\eta^2 = .36$), and dynamic balance in the posteromedial (p = .001)

.022, $\eta^2 = .16$) and posterolateral (p = .001, $\eta^2 = .27$) directions, as well as in the composite dynamic balance score (p = .031, $\eta^2 = .34$). No significant between-group differences were observed for one-mile run time (p = .385) or anterior dynamic balance (p = .093).

 Table 6

 ANCOVA Results for Between-Group Comparisons (Mean \pm SD)

Variable		Functional Training	Conventional Exercise	<i>p</i> -value	F-value	η^2
Push-ups		43.30 ± 1.70	33.20 ± 2.80	.017*	0.17	.18
Sit-ups		47.10 ± 3.50	37.90 ± 2.60	.028*	0.11	.16
One-Mile Run (s)		472.20 ± 6.92	491.60 ± 4.10	.385	12.33	.06
Peak Anaerobic Pow	er (W)	661.32 ± 14.18	627.63 ± 17.14	.001*	27.71	.36
Dynamic Balance	Anterior	94.81 ± 5.09	91.24 ± 72.60	.093	0.17 0.11 12.33	.07
	Posteromedial	105.17 ± 40.40	96.31 ± 68.30	.022*	5.36	.16
	Posterolateral	102.74 ± 92.50	92.67 ± 39.60	.001*	15.86	.27
	Composite Score	99.24 ± 13.50	93.89 ± 61.50	.031*	11.41	.34

Note. P < .05. $\eta^2 = partial$ eta squared.

4. Discussion and Conclusion

The primary objective of this study was to evaluate the effects of two distinct training protocols conventional exercise and functional training on the physical performance of military officer cadets during the initial training phase. Both groups demonstrated significant improvements in most physical fitness parameters from pre-test to post-test. However, dynamic balance improved significantly only in the functional training group, which also showed superior gains across all measured parameters, including balance. Between-group comparisons at post-test revealed no significant differences in one-mile run performance or the anterior direction of the dynamic balance test. In contrast, the functional training group significantly outperformed the conventional exercise group in the posteromedial (p = .022) and posterolateral (p = .001) dynamic balance directions, composite dynamic balance score (p = .031), peak anaerobic power (p = .001), push-ups (p = .017), and sit-ups (p = .028). Notably, the functional training group also reported a lower incidence of musculoskeletal injuries (12%) compared to the conventional exercise group (29%).

Tactical populations including military personnel, law enforcement officers, firefighters, and combat athletes require high levels of physical fitness to meet occupational demands. The specific fitness requirements vary across populations (24), but for military personnel, physical readiness is a critical determinant of mission success, complementing advancements in weaponry and technology (25). Military duties require sustained physical effort, rapid recovery, and completion of task-specific activities, combat skill execution, and confidence in diverse operational settings (26). Accordingly, military academies place substantial emphasis on physical conditioning, often through rigorous early-morning training sessions prior to academic instruction (27).

Military fitness programs typically aim to improve body composition, aerobic capacity, and muscular endurance (28). However, musculoskeletal injuries remain a significant concern, especially among officer cadets (29). Higher training volumes have been linked to increased lower extremity injury risk (30), with younger, less experienced cadets particularly vulnerable due to the combined effects of high training demands and insufficient adaptation. Kucera et al. (31) documented over 3,000 musculoskeletal injuries among cadets at three military academies over four years, highlighting the substantial injury burden in this population. Injury incidence is consistently higher among new recruits compared to experienced personnel (32, 33), likely due to abrupt increases in training load (17). Despite global efforts to reduce training-related injuries, many interventions have proven ineffective (34), often due to their generic design and

lack of alignment with the occupational demands of military service.

Evidence suggests that physical fitness data are essential for evaluating training effectiveness and minimizing injury risk in military settings (35). The present findings indicate that functional training may simultaneously improve performance and reduce musculoskeletal injury rates. Such injuries diminish the benefits of training while increasing costs (36). Prior research demonstrates an association between higher performances in standard fitness tests such as the U.S. Army Physical Fitness Test and lower injury rates during basic combat training (37). Balance, a critical component of both athletic and military performance, is also an important predictor of injury risk (38). Functional training, by enhancing neuromuscular coordination, proprioception, and core stability, can improve balance and thereby mitigate injury risk. For example, Nagai et al. (39) found that functional training improved proprioception and balance in recruits, contributing to reduced injury rates.

Although the optimal training model for tactical populations remains debated, growing evidence supports high-intensity functional training as an effective means of improving multiple domains of fitness (40). While various training methods can improve balance (41), functional training has gained particular attention in recent years (42). Heinrich et al. (43) reported that functional training yielded greater improvements in strength, aerobic capacity, and flexibility than traditional training in active-duty personnel. Similarly, Helen et al. (44) found significant gains in strength and endurance following functional training compared to traditional military training. Collectively, these findings suggest that functional training can more effectively address the broad physical demands of military service than traditional endurance-focused methods (45, 46).

Recent reviews (46, 47) further highlight that programs integrating resistance, aerobic, and bodyweight training can enhance anaerobic and aerobic performance more efficiently than conventional approaches. Concerns about traditional training models include: (1) overemphasis on aerobic conditioning, particularly long-distance running; (2) limited focus on the diverse physical demands of tactical work; (3) insufficient preparation for unpredictable operational requirements; and (4) higher injury risk associated with high-volume running (48).

This study demonstrated that both conventional and functional training protocols improved the physical performance of military officer cadets during the initial training phase. However, functional training was more effective in enhancing multiple fitness domains, particularly dynamic balance, muscular endurance, and anaerobic power, while also being associated with a lower incidence of musculoskeletal injuries. These findings underscore the superiority of functional training as a safer and more comprehensive approach to preparing cadets for the diverse physical demands of military service. Integrating functional training into early military training curricula may optimize physical readiness, reduce injury-related attrition, and support the development of sustainable fitness strategies tailored to the unique requirements of tactical populations. Future research should explore the long-term impacts of functional training and its applicability across different branches and levels of military training.

This study was limited to the initial training phase of officer cadets, and the long-term effects of functional training on performance and injury prevention were not assessed. Future studies should examine longitudinal outcomes, scalability across diverse military contexts, and potential adaptations for subpopulations with varying fitness baselines or injury histories.

Authors' Contributions

All authors contributed substantially to the conception and design of the study, data collection, data analysis, and interpretation of results. Each author participated in drafting and critically revising the manuscript for important intellectual content, and all authors approved the final version for publication.

Declaration

In order to correct and improve the academic writing of our paper, we have used the language model ChatGPT.

Transparency Statement

Data are available for research purposes upon reasonable request to the corresponding author.

Acknowledgments

The research team extends special thanks to all the participants for their valuable contribution.

Declaration of Interest

The authors report no conflict of interest.

Funding

According to the authors, this article has no financial support.

Ethics Considerations

This study was reviewed and approved by the Ethics Committee of the University of Tehran, Faculty of Sport Sciences (approval code: <u>IR.UT.SPORT.REC.1404.136</u>). All procedures were conducted in accordance with the ethical standards of the institutional and national research committees and the principles outlined in the Declaration of Helsinki. Participants provided written informed consent before enrollment, were informed of their right to withdraw at any time without penalty, and were assured of the confidentiality of their personal information.

References

- 1. Nindl BC, Jones BH, Van Arsdale SJ, Kelly K, Kraemer WJ. Operational physical performance and fitness in military women: physiological, musculoskeletal injury, and optimized physical training considerations for successfully integrating women into combat-centric military occupations. Military medicine. 2016;181(suppl_1):50-62. [PMID: 26741902] [DOI]
- 2. Jones BH, Knapik JJ. Physical training and exercise-related injuries: surveillance, research and injury prevention in military populations. Sports medicine. 1999;27(2):111-25. [PMID: 10091275] [DOI]
- 3. Hughes JM, Foulis SA, Taylor KM, Guerriere KI, Walker LA, Hand AF, et al. A prospective field study of US Army trainees to identify the physiological bases and key factors influencing musculoskeletal injuries: a study protocol. BMC musculoskeletal disorders. 2019;20(1):282. [PMID: 31185965] [PMCID: PMC6560880] [DOI]
- 4. O'Leary TJ, Wardle SL, Greeves JP. Energy deficiency in soldiers: the risk of the athlete triad and relative energy deficiency in sport syndromes in the military. Frontiers in nutrition. 2020;7:142. [PMID: 32984399] [PMCID: PMC7477333] [DOI]
- 5. Groeller H, Burley S, Orchard P, Sampson JA, Billing DC, Linnane D. How effective is initial military-specific training in the development of physical performance of soldiers? The Journal of Strength & Conditioning Research. 2015;29:S158-S62. [PMID: 26506181] [DOI]
- 6. Shamlou Kazemi A, Daneshmandi H, Sedaghti P, Hoseini Y. A Randomized Controlled Trial Comparing the Physical Performance of Soccer Players With and Without Anterior Cruciate Ligament Reconstruction While Undergoing Knee Injury

Prevention Training. Journal of Rehabilitation Sciences & Research. 2025;12(2):95-101.

- 7. Wilkinson DM, Rayson MP, Bilzon JL. A physical demands analysis of the 24-week British Army Parachute Regiment recruit training syllabus. Ergonomics. 2008;51(5):649-62. [PMID: 18432443] [DOI]
- 8. Lieberman HR, Karl JP, Niro PJ, Williams KW, Farina EK, Cable SJ, et al. Positive effects of basic training on cognitive performance and mood of adult females. Human factors. 2014;56(6):1113-23. [PMID: 25277020] [DOI]
- 9. Crowley SK, Wilkinson LL, Wigfall LT, Reynolds AM, Muraca ST, Glover SH, et al. Physical fitness and depressive symptoms during army basic combat training. Medicine and science in sports and exercise. 2015;47(1):151. [PMID: 24870581] [PMCID: PMC4246049] [DOI]
- 10. Sharma J, Dixon J, Dalal S, Heagerty R, Spears I. Musculoskeletal injuries in British Army recruits: a prospective study of incidence in different Infantry Regiments. BMJ Military Health. 2017;163(6):406-11. [PMID: 29176004] [DOI]
- 11. Molloy JM, Pendergrass TL, Lee IE, Chervak MC, Hauret KG, Rhon DI. Musculoskeletal injuries and United States Army readiness part I: overview of injuries and their strategic impact. Military medicine. 2020;185(9-10):e1461-e71. [PMID: 32175566] [DOI]
- 12. Heaton KJ, Judkins JL, Cohen B, Nguyen VT, Walker L, Guerriere KI, et al. Psychological hardiness and grit are associated with musculoskeletal injury in US Army trainees. Military Behavioral Health. 2022;10(4):429-43. [DOI]
- 13. Shattuck NL, Matsangas P, Moore J, Wegemann L. Prevalence of musculoskeletal symptoms, excessive daytime sleepiness, and fatigue in the crewmembers of a US Navy ship. Military medicine. 2016;181(7):655-62. [PMID: 27391619] [DOI]
- 14. Dijksma I, Zimmermann W, Hertenberg E, Lucas C, Stuiver M. One out of four recruits drops out from elite military training due to musculoskeletal injuries in the Netherlands Armed Forces. BMJ Mil Health. 2022;168(2):136-40. [PMID: 32139408] [PMCID: PMC8961760] [DOI]
- 15. Fleischmann C, Yanovich R, Milgrom C, Eliyahu U, Gez H, Heled Y, et al. Utility of preinduction tests as predictors of attrition in infantry recruits: a prospective study. BMJ Mil Health. 2023;169(3):225-30. [PMID: 33789974] [DOI]
- 16. Hesarikia H, Nazemian SS, Rasouli HR, Kazemi HM. Effect of foot orthoses on ankle and foot injuries in military service recruits: a randomized controlled trial. Biosciences Biotechnology Research Asia. 2014;11(3):1141-8. [DOI]
- 17. Jones BH, Canham-Chervak M, Sleet DA. An evidence-based public health approach to injury priorities and prevention: recommendations for the US military. American journal of preventive medicine. 2010;38(1):S1-S10. [PMID: 20117582] [DOI]
- 18. Xue Y, Yu H, Qin G. Towards good governance on dualuse biotechnology for global sustainable development. Sustainability. 2021;13(24):14056. [DOI]
- 19. Sefton JM, Lohse KR, McAdam JS. Prediction of injuries and injury types in army basic training, infantry, armor, and cavalry trainees using a common fitness screen. Journal of athletic training. 2016;51(11):849-57. [PMID: 28068160] [PMCID: PMC5224725] [DOI]
- 20. Kang H. Sample size determination and power analysis using the G* Power software. Journal of educational evaluation for health professions. 2021;18. [PMID: 34325496] [PMCID: PMC8441096] [DOI]
- 21. Firuzyar F, Shamlou Kazemi S, Hemati Afif A. The Effect of 8 Weeks of Resistance Training and Consumption of Flaxseed Oil on Some Antioxidant Factors (Catalase and Superoxide Dismutase) in Women with Type 2 Diabetes: A

E-ISSN: 2981-2569

Randomized Controlled Trial. Journal of Mazandaran University of Medical Sciences. 2023;33(2):49-60.

- 22. Gribble PA, Hertel J, Plisky P. Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. Journal of athletic training. 2012;47(3):339-57. [PMID: 22892416] [PMCID: PMC3392165] [DOI]
- 23. Banaszek A, Townsend JR, Bender D, Vantrease WC, Marshall AC, Johnson KD. The effects of whey vs. pea protein on physical adaptations following 8-weeks of high-intensity functional training (HIFT): A pilot study. Sports. 2019;7(1):12. [PMID: 30621129] [PMCID: PMC6358922] [DOI]
- 24. Withrow KL, Rubin DA, Dawes JJ, Orr RM, Lynn SK, Lockie RG. Army combat fitness test relationships to tactical foot march performance in reserve officers' training corps cadets. Biology. 2023;12(3):477. [PMID: 36979168] [PMCID: PMC10045466] [DOI]
- 25. Hutchinson JW, Greene JP, Hansen SL. Evaluating active duty risk-taking: Military home, education, activity, drugs, sex, suicide, and safety method. Military medicine. 2008;173(12):1164-7. [PMID: 19149332] [DOI]
- 26. Wijk J. Physical culture, sports, and military preparedness: on the upswing in physical education and public health in Sweden during World War II. Historisk tidskrift (Stockholm, Sweden). 2001(4):655-86.
- 27. Mackey CS, DeFreitas JM. A longitudinal analysis of the US Air Force reserve officers' training corps physical fitness assessment. Military Medical Research. 2019;6(1):30. [PMID: 31543076] [PMCID: PMC6755694] [DOI]
- 28. Scott SA, Simon JE, Van Der Pol B, Docherty CL. Risk factors for sustaining a lower extremity injury in an army reserve officer training corps cadet population. Military medicine. 2015;180(8):910-6. [PMID: 26226535] [DOI]
- 29. Lovalekar M, Hauret K, Roy T, Taylor K, Blacker SD, Newman P, et al. Musculoskeletal injuries in military personnel—Descriptive epidemiology, risk factor identification, and prevention. Journal of science and medicine in sport. 2021;24(10):963-9. [PMID: 33824080] [DOI]
- 30. Ghorbani M, Shamloo Kazemi A, Babakhani F. The Effect of Fatigue on the Time to Stability in Jumping and Landing in Football Players Who Have Undergone Anterior Cruciate Ligament Reconstruction. Journal of Rehabilitation Sciences & Research. 2022;9(4):167-72.
- 31. Kucera KL, Marshall SW, Wolf SH, Padua DA, Cameron KL, Beutler AI. Association of injury history and incident injury in cadet basic military training. Medicine and science in sports and exercise. 2016;48(6):1053. [PMID: 26765627] [PMCID: PMC4868773] [DOI]
- 32. Knapik JJ, Graham B, Cobbs J, Thompson D, Steelman R, Jones BH. A prospective investigation of injury incidence and injury risk factors among Army recruits in military police training. BMC musculoskeletal disorders. 2013;14(1):32. [PMID: 23327563] [PMCID: PMC3626559] [DOI]
- 33. Robinson M, Siddall A, Bilzon J, Thompson D, Greeves J, Izard R, et al. Low fitness, low body mass and prior injury predict injury risk during military recruit training: a prospective cohort study in the British Army. BMJ open sport & exercise medicine. 2016;2(1). [PMID: 27900170] [PMCID: PMC5117064] [DOI]
- 34. Cowan D, Bedno S, Urban N, Yi B, Niebuhr D. Musculoskeletal injuries among overweight army trainees: incidence and health care utilization. Occupational medicine. 2011;61(4):247-52. [PMID: 21482621] [DOI]
- 35. Grier T, Canham-Chervak M, McNulty V, Jones BH. Extreme conditioning programs and injury risk in a US Army Brigade Combat Team. US Army Medical Department Journal. 2013.

- 36. Lovalekar M, Johnson CD, Eagle S, Wohleber MF, Keenan KA, Beals K, et al. Epidemiology of musculoskeletal injuries among US Air Force Special Tactics Operators: an economic cost perspective. BMJ Open Sport & Exercise Medicine. 2018;4(1). [PMID: 30622731] [PMCID: PMC6307598] [DOI]
- 37. Hauschild V, DeGroot D, Hall S, Deaver K, Hauret K, Grier T, et al. Correlations between physical fitness tests and performance of military tasks: a systematic review and meta-analyses. 2014.
- 38. Sayenko DG, Alekhina MI, Masani K, Vette A, Obata H, Popovic M, et al. Positive effect of balance training with visual feedback on standing balance abilities in people with incomplete spinal cord injury. Spinal cord. 2010;48(12):886-93. [PMID: 20404833] [DOI]
- 39. Nagai T, Bates NA, Rigamonti L, Hollman JH, Laskowski ER, Schilaty ND. Effects of neuromuscular and proprioceptive training on self-reported wellness and health scores and knee sensorimotor characteristics in active seniors. Journal of Bodywork and Movement Therapies. 2023;36:370-9. [PMID: 37949586] [DOI]
- 40. Falk Neto JH, Kennedy MD. The multimodal nature of high-intensity functional training: potential applications to improve sport performance. Sports. 2019;7(2):33. [PMID: 30699906] [PMCID: PMC6409553] [DOI]
- 41. DiStefano LJ, Clark MA, Padua DA. Evidence supporting balance training in healthy individuals: a systemic review. The Journal of Strength & Conditioning Research. 2009;23(9):2718-31. [PMID: 19910803] [DOI]
- 42. Guler O, Tuncel O, Bianco A. Effects of functional strength training on functional movement and balance in middle-aged adults. Sustainability. 2021;13(3):1074. [DOI]
- 43. Heinrich KM, Spencer V, Fehl N, Carlos Poston WS. Mission essential fitness: comparison of functional circuit training to traditional Army physical training for active duty military. Military medicine. 2012;177(10):1125-30. [PMID: 23113436] [DOI]
- 44. Helen J, Kyröläinen H, Ojanen T, Pihlainen K, Santtila M, Heikkinen R, et al. High-intensity functional training induces superior training adaptations compared with traditional military physical training. The Journal of Strength & Conditioning Research. 2023;37(12):2477-83. [PMID: 37387578] [PMCID: PMC10671205] [DOI]
- 45. Roy TC, Springer BA, McNulty V, Butler NL. Physical fitness. Military medicine. 2010;175(suppl 8):14-20. [DOI]
- 46. Poston WS, Haddock CK, Heinrich KM, Jahnke SA, Jitnarin N, Batchelor DB. Is high-intensity functional training (HIFT)/CrossFit safe for military fitness training? Military medicine. 2016;181(7):627-37. [PMID: 27391615] [PMCID: PMC4940118] [DOI]
- 47. Haddock CK, Poston WS, Heinrich KM, Jahnke SA, Jitnarin N. The benefits of high-intensity functional training fitness programs for military personnel. Military medicine. 2016;181(11-12):e1508-e14. [PMID: 27849484] [PMCID: PMC5119748] [DOI] 48. Jones BH, Hauschild VD. Physical training, fitness, and injuries: lessons learned from military studies. The Journal of Strength & Conditioning Research. 2015;29:S57-S64. [PMID:

{Jones, 2015 #4071]} [DOI]

Health Nexus

E-ISSN: 2981-2569